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ABSTRACT: The purpose of this study is to apply Laplace Adomian Decomposition Method (LADM) for 
obtaining the analytical and numerical solutions of a nonlinear differential equation that describes a 
magnetohydrodynamic (MHD) flow under the stretching sheet problem. By using this method, the similarity 
solutions of the problem are obtained. For obtaining computational solutions, we combined the obtained 
series solutions by the LADM with the Padé approximation. The method is easy to apply and give high 
accuracy results. From the tables and figures efficiency of the presented technique is shown. 
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INTRODUCTION 
 
 Nonlinear phenomena, that appear in many ares in scientific fields such as solid state physics, plasma physics, 
fluid mechanics, population models and chemical kinetics, can be defined by nonlinear differential equations. One of 
the most important kind of these equations is the nonlinear differential equations that characterize boundary layers 
in unbounded domain. 
 Firstly, Sakiadis in 1962 (Sakiadis, 1961) solved the problem of forced convection along an isothermal constantly 
moving plate which it is a classical problem of fluid mechanics. Magnetohydrodynamic (MHD) is considering the 
interaction conducting fluids with electromagnetic problms. The flow on electrically conducting fluid with in the 
magnetic field is one of the most applicable sections in various areas of engineering and technology. The viscous 
flow du to the stretching boundary is important in extrusion process when sheet material is pulled out of an orifice 
with rasing velocity. Therefore, since the numerical/analytical of fluid flow across a thin liquid filmis very important in 
many branches of science and technology, then many authors paid much attention to consider the behavior of this 
problem numerically and analytically. In investigation of boundary layers problems, by applying a good variable 
transformation, we convert the system of Navier-Stokes equations to a nonlinear ordinary boundary value problem 

with a semi-infinite interval. In (Boyd, 2000) , the infinite domain replaced by ],[ LL  and the semi-infinite travel with 
][0,L  by selecting a sufficiently large L . Guo (Guo, 2000) converted the problem of semi-infinite domain to a model 

of boundary domain.  
 Recently, theory of the boundary layers has been successfully used and investigated to the MHD Falkner-Skan 
flow of viscous fluids (Falkner, 1931; Soundalgekar, 1981). Very recently, Robert et.al analyzed the existence and 
uniqueness results of the MHD Falkner-Skan flow (Robert et al., 2010) Abbasbandy et.al in (Abbasbandy et al., 2009; 
Abbasbandy et al., 2009) investigated this problem numerically by using Hankel-Padé method and Homotopy 
analysis method, respectively. Afzal in (Noor, 2010) studied the Falkner–Skan problem for flow past a stretching 
surface with suction or blowing. Very recently, the MHD Falkner-Skan boundary layer flow over a permeable wall in 
the presence of a transverse magnetic field authors have been examined and approximate results for the similarity 
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solutions have been obtained by using the differential transform method (DTM) coupled with the Padé approximation 
(Xiao-hong, 2011). 
 The boundary-layer problems often can be expressed in the form of a nonlinear two point boundary value 

problem with specific conditions at the two boundaries of the domain )[0,= D , which can not be often solved 
analytically and exactly in a closed form. 
The Adomian Decomposition Method has been applied to a wide class of problems in physics, biology and chemical 
reactions. The method provides the solution in a rapid convergent series with computable terms (Adomian, 1994, 
Adomian et al., 1996). Then by applying this method, the numerical solutions of some equations can be obtained. In 
this research, we will combine the Adomian Decomposition Method with the laplace transformation to obtain the 
similarity solution of an important nonlinear differential equation. This method is proposed in (Khuri, 2001; Syam, 
2006). Then, a combination of the Laplace Adomian Decomposition Method with the Padé approximations, has been 
presented by Bakera (Baker, 1975). 
This paper has the following structer: converting the model of system of nonlinear PDEs to the nonlinear ordinary 
differential equation is presented in section 2. In section 3, we applied the LADM to the obtained ordinary differential 
equation. In section 4, combining the LADM with the Padé approximant is shown. Finally, the numerical result is 
reported. 
 
Mathematical formulation and discussion 
  In this section suppose that we consider flaw of an incompressible viscous fluid over exponential stretching 

sheet at 0=y . Suppose that ),( u  be the velocity components in the ),( yx  directions, respectively. In fact, it is the 

kinematic viscosity which is the ratio of dynamic viscosity to the density of the luid i.e. 


 =

. 
Then based on the above assumption, the corresponding phenomenon can be introduced as follows  
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where 0U  and L  are the reference velocity a constant respectively. 
Now we define the following similarity transformations  
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By using (4) in the (1), (2) and (3), we have  

0,=)()()(2)( 2  ffff   
(5) 

with boundary conditions  
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 Based on our best knowledge, the numerical solution of (5) and (6) has been discussed in [32]. In this paper, we 
shall proposed one another numerical scheme based on Laplace Adomian decomposition method for analytical 
solution and Padé aproximant for numerical solution of (5) in the presence of boundary condition (6).  
 
 
 
Application of the Laplace Adomian Decomposition Method 
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 In this section, we use the Laplace transform algorithm for third order nonlinear initial value problem to have 
similarity solution of the nonlinear ordinary differential equation (5) with boundary conditions(6). Firstly, we take the 

Laplace transformation (L ) on both sides of Eq.(5) in the presence of the boundary conditions (6). Then, we get  
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 Within the our computational process, we will determine the value of (0)f  . Then, if we define =(0)f  , we  
can solve the equation (5) subject to the following initial value conditions  

 













,=(0)

1,=(0)

0,=0

f

f

f

 

(8) 

 where   is an unknown constant that it must to be found. Now, by applying the conditions (8) into (7), we obtain  
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 By using the Laplace decomposition method, we will be able to obtain an analytical solution of (9) in the form of 
the following infinite series  
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By presenting an iterative process, we will find the components )(nf , for 0,1,2,...=n . In addition, we decomposed 

the nonlinear terms 
2)(f   and )()(  ff   defined into Adomian polynomials (Adomian 1994, Adomian et.al 1996) to 

the following cases  
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Then, we have  
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 By using above relations, the few components of the Adomian polynomials of above nonlinear terms cab be 
given as follow:  
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and  



J Nov. Appl Sci., 2 (2S): 940-946, 2013 

 

943 
 


























),()()()()()()()()()(=)(

),()()()()()()()(=)(

),()()()()()(=)(

),()()()(=)(

),()(=)(

04132231404

031221303

1102202

10011

000











ffffffffffB

ffffffffB

ffffffB

ffffB

ffB

 

(14) 

In this way, by using the above results and Adomian polynomials into (9), we get  
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 where 
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 represents the term arising from prescribe initial conditions, then based on the modified 

Laplace decomposition method [?], we can decompose the function )(sK  into two parts as the 
)()(=)( 10 sKsKsK 
. 

Therefore, for obtaining the 0)( , nfn , firstly we compare both sides of the equation (15) and then use from the 

inverse Laplace transform 
1L . Finally, by applying the following iterative process, we can obtain the values of nf  for 
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 By using inverse Laplace transform in the equation (17), we can obtain the initial term 0f . Now, we can compute 

the value of 1f  by using the known value of 0f . By continuing this process, we can find the successive terms. Then, 
we have  
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  By obtaining the components 
)(if , for .0,1,2,3,..=i , the approximate analytic solution of the unknown function 

)(f  can be found from equation (10). Then, the approximate analytic solution for the ten iteration step is  
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 From Eq (18), it is evident that the obtained analytic solutions through LADM are power series in the independent 

variable. Then, according to boundary condition 0=)(f , these solutions have not the correct behavior at infinity 
and so these solutions can not be directly applied. So, to resolve this problem, we combine the series solutions, 
obtained by the LADM, with the Padé approximants.  
 
The LADM-Padé Approximation 
 Combining the obtained series solutions by the LADM in the previous section with the Padé approximation is the 
main part of this section. To this end, we apply this process for obtaining some high accuracy computational results 
for problem (5) with boundary conditions (6). Then, we transform the power series obtained by the Laplace Adomian 
Decomposition Method (18) into a rational function as follow  
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 We know that if SN  , then the limit at infinity in the boundary conditions (6) has a correct behavior. So the 

rational function (19) has 1NS  coefficient that we can select them. If )](/[ NS  is exactly a Padé approximation, 

then )(=)](/[)( 1 NSONSf  . Then we can obtain the coefficient ja
 and jb

 by the following relations  
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 where 0=kk ba   if Nk > . From (20) and (21), we can obtain the values of )(0 Siai   and 
)(1 Njbj 
. 

We know that if the function )(tf  is bounded i.e. for all 0>t  we have Mtf <)(|  and the )(=)(lim  ftft  be exist, 

then )(=)(lim  fsFs , where ))((=)( tfLsF , the laplace transform of the function )(tf . 

For finding the unknown parameter  , we can utilize the above point for laplace transform to )(tf   or by using Pade 
sequences. 

Plot of the approximate solution of )(f  and )(f  , which obtained by the LADM-Pade is shown in Figure 1 and 
Figure 2. The accuracy of proposed method can be understand from these plots.  

 

 
Figure 1. Plot of LADM-Padé approximate solution of )(f  
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Figure 2. 

 

CONCULSION 
 

 In this article, one of the third order nonlinear autonomous equation subject to a boundary condition which defined 
at infinity, is considered. A new semi-analytical method (Laplace Adomian Decomposition coupled with Pade 
approximant) is successfully aplied for solving this equation. The obtained computational results by using our method 
are presented in a table. It is evidence that this method give high accuracy results in very few itterations and can be 
applied to other similar problems.  
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